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Abstract

This paper presents a theoretical and experimental study of the shape of long isolated bubbles similar
to those observed in horizontal slug ¯ows. Bubbles of di�erent volumes were studied, their lengths
varying from 30 to 100 times the pipe diameter. Two di�erent shapes were observed corresponding to
plug and slug ¯ow regimes. The transition between plug and slug ¯ow was shown to depend on both
Froude number and bubble length. A model based on the mass and momentum conservation equations
of each phase is proposed. It is able to predict the transition between plug and slug ¯ow regimes as well
as the volume and the shape of long bubbles. It is shown that usual slug ¯ow codes that aim to predict
the void fraction tend to overestimate the gas fraction in the bubble region. The model may be easily
implemented into slug tracking codes. # 1999 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Horizontal slug ¯ow has been the object of studies for at least 30 years. Models to predict
the phase velocities and pressure gradient were developed, based on the unit cell concept
initially described by Wallis (1969). Dukler and Hubbard (1975) proposed the ®rst
comprehensive model and further papers were variations upon the same concept. Fabre et al.
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(1989) proposed a di�erent approach based on a statistical cell unit (see also Fabre and LineÂ ,
1992). All these developments improved the ability to predict some important ¯ow parameters
such as pressure gradient, mean phase velocities and mean volume fractions. But in no way did
they improve the knowledge of the slug structure itself, i.e., very little advance was made on
the prediction of the statistics of bubble and slug lengths and their evolution along the pipe.
Gas±liquid slug ¯ow is formed by an alternation in space and time of long bubbles and

liquid slugs, as shown in Fig. 1. In the unit cell models, the gas volume fraction in the bubble
region is usually determined, assuming that the liquid ®lm has a constant thickness like in fully
developed strati®ed ¯ow. It is also assumed that bubbles and slugs have constant lengths,
which leads to a periodic ¯ow structure. In the statistical cell model the hypothesis is less
restrictive. The structure is not necessarily periodic, although it is also assumed that the liquid
®lms are fully developed. From various experiments carried out in horizontal ¯ow, the gas
volume fraction in any section of the bubble region depends on the distance to the bubble
nose. Moreover, the resulting structure is never periodic. In reality, the probability density
function (PDF) of the bubble and slug lengths are widely distributed about the average (see
Fig. 2), as observed by Grenier (1997). It is shown that bubbles measuring from 5 to 50D were
observed, whereas the slug length was observed in the range between 5 and 30D.
Some interesting experimental works were made recently by Dhulesia et al. (1991), Nydal et

al. (1992) and Grenier (1997), who provided a statistical description of slug ¯ows. Recent
attempts to predict the evolution of the slug structure were made using two di�erent
approaches. The ®rst and also the most widely employed approach is the `slug-tracking'
method, where the volume and position of each individual bubble and slug are followed step-
by-step along the pipe. The bubbles are allowed to expand as pressure decreases and
coalescence may occur. Straume et al. (1992), Barnea and Taitel (1993) and Nydal and
Banerjee (1995) applied this method to describe the slug ¯ow evolution along the pipe. The
second approach aims at solving transport equations for the distribution of bubble and slug
lengths. The ®rst attempt to use this method was made by Grenier (1997). It was limited to the
pipe region, where the interaction between bubbles is supposed weak and the depressurization
is the only cause of structure evolution. In any of the proposed methods, additional closure
laws are required to provide unknown relations such as the length of a bubble as a function of
its volume. Most slug tracking models assume that all bubbles are fully developed, and it will
be shown that this assumption leads to large errors, when the bubble length is smaller than
100D. Another frequent simpli®cation for horizontal ¯ow assumes that the liquid ®lm is

Fig. 1. Gas±liquid horizontal slug ¯ow.
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motionless under the bubble. This leads to errors in the liquid fraction under a fully developed
bubble of at least 5% for air and water at atmospheric condition.
This paper investigates the shape and volume of bubbles of given length as functions of ¯uid

velocity and properties. Grenier et al. (1997) showed that the shape of a bubble depends on the
mixture velocity, in agreement with the observations of Woods and Hanratty (1996). This
con®rms in slug ¯ow, the earlier study of Bendiksen (1984) on isolated bubble that showed
that their shape depends on liquid velocity. As shown in Fig. 3, the shape is also independent
of the bubble length. These results prove that the ¯ow ahead of the bubble is responsible for

Fig. 2. Lengths probability density functions (PDF), after Grenier (1997); jL � jG � 1:0 m/s; D � 53 mm; measured
at 84 m from inlet: (a) long bubble, (b) liquid slug.

Fig. 3. Shape of two bubbles at the same mixture velocity, after Grenier et al. (1997).
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its shape. Studying the behaviour of isolated bubbles in a liquid ¯ow was chosen to ensure a
better control of the experiment, so as to avoid the overlap of di�erent phenomena induced by
a train of bubbles.
The paper is organised as follows: Section 2 presents the experimental facility which allows

the injection of a single bubble without disturbing the liquid ¯ow and describes the sensors
used to measure the bubble shape. In Section 3, some preliminary experimental results are
presented: the in¯uence of the ¯ow velocity and of the bubble volume on its shape is analysed.
In Section 4, a model is proposed: the bubble is divided in four regions, the nose, the body, the
hydraulic jump at the back and the tail. After validation, the model is used in the last part of
the paper to estimate errors due to the assumption of constant ®lm thickness.

2. Experimental facility

The test facility was designed and built at the Institut de MeÂ canique des Fluides de Toulouse
(IMFT) to study the structure of the horizontal slug ¯ow and its evolution along the pipe
(Grenier et al., 1997). Air and water are injected in a horizontal 90 m long transparent PVC
pipe with an internal diameter of 53 mm. The water ¯ows in a closed loop and a pump
provides super®cial liquid velocities up to 2.0 m/s. The liquid ¯ow rate is measured by a set of
ori®ce plates and the ¯ow is controlled through electrical valves by the Control and Data
Acquisition System (CDAS). The pipe inlet is designed to prepare an air bubble of a given
volume and to introduce it in the liquid ¯ow.
Fig. 4 presents a scheme of the test facility. Liquid is supplied at the pipe inlet through the

inclined branch `A'. A predetermined air volume is initially introduced in the vertical branch,
where the pneumatic valve `B' is kept closed. Controlled by the CDAS, valve `B' opens at the
same time that valve `A' closes. This ensures a constant ¯ow within the horizontal pipe. The
liquid ¯ow is deviated into the vertical branch and it pushes the gas volume into the pipe. At a

Fig. 4. Test loop scheme.
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few meters from the inlet, the gas bubble has already reached its ®nal shape and it travels
along the pipe at a rather constant velocity.
The measurement section is placed at 70 m from the inlet. A set of ®ve sensors, further

referred to as `wire probes', is used. The distance between each probe is 1 m. Each sensor
consists of a metallic wire electrically isolated by a Te¯on layer. The isolated wire, with an
external diameter of 0.29 mm is installed vertically at the centreline of the pipe section. The
capacitance of the wire is linearly proportional to the height of the liquid around it. An
electronic device converts the wire capacitance into a voltage signal. Data from the ®ve sensors
allow the determination of the bubble velocity, length and shape. Further details on mounting
and calibration procedure of wire probes may be found in (Fagundes Netto, 1999).
These liquid height sensors have been successfully used in the past to characterise the wavy

surface of strati®ed ¯ows. For slug ¯ow condition, however, the liquid reaches the top of the
pipe and an extra care is required in the wire mounting. The present installation was designed
to avoid water leakage at the top, that could be responsible of overestimating the liquid height.
It was impossible, however, to avoid a minimum space of about 1 mm between the seal and
the inner pipe wall. At high velocities the liquid trapped in this space may lead to an
overestimation on the liquid height, of up to 0.02D.
The time trace of the measured liquid height is transformed in a space evolution by

multiplying the time series by the bubble nose velocity. The liquid height is converted into
volume fraction assuming that the gas±liquid interface in the cross section is horizontal. The
relations among the geometric parameters in a circular cross section are described in Appendix
A. The bubble shape is represented in this paper by the plot of the liquid volume fraction aL as
a function of the distance x to the nose of the bubble, measured in pipe diameters.
A conductive sensor was used to validate the wire signal. It is composed of two metallic

rings ¯ush mounted at the pipe wall and distant 5 cm from each other. This sensor, further
referred to as `ring probe', measures the electric conductance, that is proportional to the
volumetric liquid fraction within the control volume between the two rings. The method was
used and discussed by Nydal and Andreussi (1991).
The accuracy in determining the bubble velocity depends on the accuracy in the estimation

of the time Dt elapsed between the passage of the bubble nose by two successive wires. The
uncertainty on Dt is equal to the sampling period 1/Fe, where Fe is the sampling frequency.
Thus, the uncertainty dV is:

dV � d

Dt2
2

Fe

where d is the distance between the wires. The relative uncertainty is equal to:

dV
V
�2

V

d

2

Fe

For each ¯ow condition, the acquisition frequency is shown in Table 1. These values guarantee
that the relative uncertainty of the bubble velocity is always smaller than 0.5%.

J.R. Fagundes Netto et al. / International Journal of Multiphase Flow 25 (1999) 1129±1160 1133



3. Experimental results

For each run, a single bubble is injected in the pipe at a constant liquid ¯ow rate. The test
campaign covered a wide range of liquid ¯ow velocity. For each ¯ow rate, bubbles with
di�erent volumes were observed. Each bubble was detected by ®ve wire probes and one ring
probe. The good agreement of measured data from these di�erent sensors, shown in Fig. 5,
ensures that the assumption of a horizontal liquid±gas interface was correct. The ®gure also
shows that the ring probe is not able to detect the wavy interface owing to its weak spatial
resolution, contrary to the wires.

Fig. 5. Comparison between wire and ring sensor: (a) 0.7 m/s, (b) 1.5 m/s. ÐÐÐ Wire; ÐÐÐ Ring.

Table 1
Acquisition frequency

Liquid velocity (m/s) 0.5 0.6 0.7 0.8 1.0 1.2 1.5 1.8
Bubble velocity (m/s) 0.80 0.90 1.00 1.11 1.32 1.53 1.85 2.20

Frequency (Hz) 300 350 400 450 550 600 750 900
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Fig. 6 shows the superposition of data from the ®ve wires for a single bubble, at two
di�erent velocities. The agreement of the ®ve curves shows that the bubble shape remains fairly
unchanged during its motion. The ®gure also shows that two categories of bubbles may be
distinguished, according to their shape. The transition was observed to be mainly function of
the liquid velocity U ahead of the bubble. From dimensional analysis, it reduces to a function
of the Froude number de®ned by:

FrU � U�������
gD
p

where g is the gravity and D the pipe diameter.
At low velocities, typically when the Froude number is smaller than 1, Fig. 6a shows that

the bubble presents a short nose followed by a wavy interface with a constant wavelength and
a decreasing amplitude. It ends with a level jump that can be viewed as a hydraulic jump
attached to the bubble end. This hydraulic jump does not reach the top of the pipe. It creates a
tail behind the bubble that gives a staircase aspect. It is interesting to note that the wavy
interface observed at low ¯ow rates is frozen, indicating that it is stationary in the frame
moving with the bubble.

Fig. 6. Superposition of the signal from ®ve wires: (a) 0.5 m/s, (b) 1.8 m/s.
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As the Froude number increases, the nose becomes longer, the wave amplitude smaller and
the tail thinner and shorter. For single bubbles, the tail is always attached to the bubble.
Nevertheless, Grenier (1997) observed that in regular slug ¯ows, the tail may detach from time
to time from the bubble. The reason is that in slug ¯ow, the velocity of each bubble oscillates,
as successive bubbles and liquid slugs leave the pipe. This oscillation causes the level jump at
the back of the bubble to vary and, if it reaches the top of the pipe, the tail separation occurs.
For high velocities, typically when FrU is greater than 2, the tail and the stationary wave

attached to the nose disappear, as shown in Fig. 6b. In the absence of tail, it was observed that
small bubbles are entrained in the wake of the long bubble. Fig. 7 shows pictures from the
bubble tail at di�erent velocities. It con®rms that the slug behind the bubble is free of bubbles
when the tail is present (pictures `a' and `b') in contrast to picture `c', where the level jump
reaches the top of the pipe and the entrainment of small bubbles is observed.
The theoretical transition between the shape of two bubbles is proposed in Section 4. Ruder

and Hanratty (1990) used this shape characteristic to de®ne the transition between the plug
¯ow and the slug ¯ow regimes.
The position of the bubble nose is not detected by the wire probes. They measure the total

height of the wire wetted by the liquid and it is assumed that the liquid occupies the lower
section. Fig. 8 shows that this assumption is valid for small velocities. The nose is located on
the top of the pipe and its tip touches the upper wall. At higher velocities, however, Fig. 8c
shows that the nose of the bubble moves toward the centre of the pipe, as observed by
Bendiksen (1984).
For a ®xed liquid ¯ow rate, bubbles with di�erent volumes lie on a same basic shape, as

Fig. 7. Bubble tail: (a) 0.6 m/s, (b) 1.0 m/s, (c) 1.5 m/s.
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shown in Fig. 9. This agrees with the conclusion of Grenier et al. (1997). Fig. 9a shows that
the stationary wave attached to the bubble nose is independent of the bubble length. It also
shows that the shorter the bubble, the longer the tail. It will be seen that shorter bubbles have
thicker ®lm, which means faster liquid ®lm: the intensity of the hydraulic jump behind the
bubble is smaller and thus it creates longer tails.

4. Bubble shape model

The present analysis is limited to horizontal ¯ow. The bubble is divided in four regions, as
de®ned in Fig. 10: the nose, the body, the hydraulic jump at the back and the tail, if it exists.
The back end of the slug that precedes the bubble is assumed non-aerated, as well as the liquid
®lm.

4.1. Bubble body

The solution for the bubble body is similar to the bubble shape model described by
Andreussi et al. (1993). It is based on the mass and momentum conservation of each phase:

@aK
@t
� @�aKuK�

@x
� 0

@�aKuK�
@t

� @
ÿ
aKu2K

�
@x

� aK
rK

@pi

@x
� aKg

@H

@x
� tW

K SK � ti
KSI

rKA

Fig. 8. Bubble nose: (a) 0.6 m/s, (b) 1.0 m/s, (c) 1.5 m/s.
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Fig. 9. In¯uence of the bubble volume: (a) 0.6 m/s, (b) 1.2 m/s.

Fig. 10. Bubble regions.
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where aK,rK and uK are, respectively, the volume fraction, the density and the velocity of phase
K, pi the interfacial pressure, A, the tube cross-section and H, the vertical position of the
interface. The shear stresses exerted by the wall and by the interface upon the phase K are tW

K

and ti
K, respectively. SK is the wall perimeter wetted by phase K and SI is the interfacial

perimeter. As it stands, the momentum equation is written in the frame of long wave
approximation. Some tricky simpli®cations allow a simple analytical solution of these
di�erential equations.
We will use a new set of variables: x � �Vtÿ x�=D and t � t, where V is the bubble nose

velocity and x is the distance from the bubble nose divided by the pipe diameter. Considering
that the shape does not change in time, and eliminating the pressure term, the partial
di�erential equations reduce to:

aL�Vÿ uL� � j �1�

aG�Vÿ uG� � 0 �2�

j2

a3L

daL

dx
ÿ g 0D

dh

dx
� 4

rL

�
tW

L sL

aL

ÿ tW
G sG

aG

ÿ ti
GsI

aGaL

�
�3�

where j is the liquid ¯ux under the bubble. The dimensionless parameter sK � SK=S was
introduced, S being the pipe perimeter. For a non-aerated liquid slug, j � VÿU, U being the
mean liquid velocity ahead of the bubble. The modi®ed gravitational acceleration is g 0 �
gDr=rL and h � H=D.
Far enough from the nose (x41), the ¯ow in the liquid ®lm is fully developed. The LHS of

Eq. (3) vanishes and the solution aL1 is given from:

aL1�Vÿ uL1� � j �4�

aG1�Vÿ uG1� � 0�)V � uG1 �5�

tW
L1sL1
aL1

ÿ tW
G1sG1
aG1

ÿ ti
G1sI1

aG1aL1
� 0 �6�

The volume fraction of the liquid ®lm far from the nose can be determined if closure laws are
known for the wall and interfacial shear stresses. Assuming that the liquid ®lm velocity uL1 is
much smaller than the bubble velocity V, as proved further:

tW
L � ÿ

1

2
rLfLu

2
L

tW
G � ÿ

1

2
rGfGV

2
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ti
G � ÿ

1

2
rGfI�Vÿ uL�2� ÿ1

2
rGfIV

2 �7�

where f is the friction factor. Assuming that both gas and liquid ¯ows are in a turbulent
regime, the friction factors are expressed by:

fL � C�ReL�ÿn, ReL � u1D
nL

�
aL

sL

�

fI � fG � C�ReG�ÿn, ReG � VD

nG

�
aG

sG � sI

�
�8�

Substituting Eqs. (7) and (8) in Eq. (6), a relation between the liquid velocity and the liquid
fraction far from the nose appears:

u2L1 �
�
aL1sG1 � sI1

aG1sL1

�
rG

rL

�
ReL

ReG

�n

V 2

It is possible to separate the in¯uence of ¯uid properties and phase fraction in writing the
above equation under the form:

uL1 � bFV �9�
Assuming for f, the validity of Blasius relationship, n equals 1/4. It yields:

b �
 

nGr4G
nLr4L

!1=7

and F �
"
�aL1sG1 � sI1�4aL1�sG1 � sI1�

�aG1sL1�5
#1=7

where F is a function of the liquid fraction and b depends only on the ¯uids properties. For
air and water at atmospheric pressure, b � 0:0315. Combining Eqs. (9) and (4) leads to

aL1
�
1ÿ bF�aL1�

� � j
V

�10�

The above implicit equation in aL1 can be solved by noting that b is a small parameter. Thus
aL1 can be expressed through an asymptotic series:

aL1 � aL0 � baL1 � b2aL2 � � � � �11�
The next step is to introduce Eq. (11) into (10) and to separate the terms by powers of b. The
®rst and second terms give the values of aL0 and aL1:

b0�)aL0 � j
V

b1�)aL1 � aL0F�aL0�
and the solution to the liquid fraction far from the nose is given by:
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aL1 � j
V

�
1� bF

�
j
V

��
�12�

As far as the liquid fraction far from the nose falls between 0.1 and 0.5, Appendix A shows
that the function F may be replaced by a linear relation:

F�aL� � 1:70�aL � 0:5� �13�

The general solution is obtained replacing Eq. (13) into (12):

aL1 � j
V

241� 1:70

�
j
V
� 0:5

� 
nGr4G
nLr4L

!1=7
35 �14�

In the particular case of water and air at atmospheric pressure, Eq. (14) simpli®es to:

aL1 � 1:027
j
V
� 0:054

�
j
V

�2

�15�

Combining Eq. (15) and the mass conservation equation (4), a relation between the ®lm
velocity far from the nose uL1 and the known parameters V and j is deduced:

uL1 � 0:027� 0:054j=V
1:027� 0:054j=V

V �16�

The ratio j=V is typically between 0.15 and 0.50. In this range, the ®lm velocity far from the
nose uL1 varies from 0.034 to 0.051 V. This justi®es the previous assumption that the liquid
velocity in the ®lm is small in comparison to the bubble velocity.
The momentum equation (3) may be rewritten to introduce the shear stress upon the liquid,

far from the nose:

j2

a3L

daL

dx
ÿ g 0D

dh

dx
� 4

rL

�
tW

L sL

aL

ÿ tW
G sG

aG

ÿ ti
GsI

aGaL

�

ÿ 4

rL

�
tW

L1sL1
aL1

ÿ tW
G1SG1
aG1

ÿ ti
G1sG1
aG1aL1

�
�17�

Re-arranging the terms we may write

j2

a3L

daL

dx
ÿ g 0D

dh

dx
� 4

rL

�
tW

L sL

aL

ÿ tW
L1sL1
aL1

�
ÿ 4

rL

�
tW

G sG

aG

� ti
GsI

aGaL

ÿ tW
G1sG1
aG1

ÿ ti
G1sI1

aG1aL1

�
�18�

The second term on the RHS is small in comparison to the ®rst term. As a matter of fact, the
ratio between the two terms is proportional to the ratio between the gas and the liquid
densities, which is about 1:1000 for air and water. Eq. (18) may be simpli®ed to:
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j2

a3L

daL

dx
ÿ g 0D

dh

dx
� 4

rL

�
tW

L sL

aL

ÿ tW
L1sL1
aL1

�
�19�

Assuming that fL � fL1, the equation above may be re-written in terms of the liquid fraction
far from the nose (Fagundes Netto, 1999):

j2

a3L

daL

dx
ÿ g 0D

dh

dx
� ÿ2fL sL

a3L

�
aL ÿ aL1

aL1

�2

j2 �20�

Eq. (20) will be used with aL1 given by Eq. (14) or (15). The body shape is then described by:ÿ
1ÿ ka3L

�
sL�aL ÿ aL1�2 daL � ÿ 2fL

�aL1�2 dx �21�

where

k � dh

daL

g 0D
j2
� 1

4sI

g 0D
j2

It must be pointed out that sL and dh=daL are functions of aL. The solution aL�x� of Eq. (21)
possesses two branches according to the sign of (1ÿ ka3L). Returning to dimensional
parameters and taking into account that dh=daL � 1=�4sI�, this term can be written under the
form:

1ÿ ka3L � 1ÿ Fr2F

where FrF � �Vÿ uL�=
������������
g 0HM

p
is the ®lm Froude number in which HM � AaL=SI is the mean

liquid height.
A typical solution of Eq. (21) is shown in Fig. 11. The upper branch corresponds to

1ÿ ka3L<0, i.e., FrF > 1. The lower branch corresponds to 1ÿ ka3L > 0, i.e., FrF<1. For the
bubble body, we are looking for solutions where daL=dx is negative, corresponding to the lower
branch. For this branch, aL is always smaller than kÿ1=3. Moreover, it is also greater than its
asymptotic value far from the nose. Therefore, the body solution is valid only when
aL1<aL<k

ÿ1=3.
As it stands, Eq. (21) has no analytical solution. An approximated solution can be found for

aL in the range [ 0.2, 0.8 ]. In this case, it is found (see Appendix A) that:

dh

daL

� 0:820 and sL � aL � 0:5

2

Considering the friction factor constant and equal to its value at the liquid slug (fL0), Eq. (21)
becomes ÿ

1ÿ ka3L
�
daL

�aL � 0:5��aL ÿ aL1�2 � ÿ
fL0

�aL1�2dx �22�

where k � 0:820g 0D=j2 Eq. (22) may be integrated analytically and its solution is
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ÿ
�
1� k

8

�
ln

�
2aL � 1

2aL0 � 1

�
� ÿ1� ka2L1�1:5� 2aL1�

�
ln

�
aL ÿ aL1
aL0 ÿ aL1

�

ÿ �aL1 � 0:5�2
( ÿ

1ÿ ka3L1
�

�aL1 � 0:5��aL0 ÿ aL1��aL ÿ aL1� ÿ k

)
�aL ÿ aL0�

� fL0

�
aL1 � 0:5

aL1

�2

�xÿ x0� �23�

where the initial condition (x0,aL0) will be given by the nose model.

4.2. Bubble nose

Eqs. (1)±(3) cannot describe the nose of the bubble because in this region dh=daL is not weak
and the long wave approximation fails. Moreover, it was seen that at high velocities, the nose
moves toward the centre of the pipe. In this situation, the liquid velocity around the nose is
necessarily 3D, and a 2D model cannot predict its actual shape. As a sophisticated 3D model,
for the bubble nose is out of the scope of this paper and considering that the nose length is less
than one pipe diameter, the solution proposed by Benjamin (1968) for pipe voidage and
developed in the frame of the inviscid theory was used. This solution is given, after correction

Fig. 11. Bubble shape: body solution for U � 1:8 m/s and V � 2:2 m/s.
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of a typographic error, by:
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where a � 1:49, b � 0:85 and R is positive. We are looking for solutions with x<1. In this
range the Benjamin solution may be approximated by a second-order polynomial equation:

aL � 1ÿ 0:775x� 0:345x2 �24�
The nose solution of the bubble shall ®t the body solution at (x0,aL0), where both curves have
the same inclination:

ÿdaL

dx
jaL0
� fL0�aL0 � 0:5�

1ÿ ka3L0

�
aL0 ÿ aL1

aL1

�2

�
��������������������������������������
1:38�aL0 ÿ 0:5648�

p
�25�

As the nose region is arbitrarily de®ned as xR1, aL0 must fall within [aLM,1] where aLM � 0:57
from Eq. (24) and x � 1. Moreover, aL0 must also belong to the body solution that falls within
[aL1,kÿ1=3]. Combining these conditions leads to:

aLM<aL0<k
ÿ1=3

With aL0 given numerically by Eq. (25), x0 is determined by (24). When x<x0, the nose Eq.
(24) is applied. Otherwise, Eq. (23) is applied with initial condition (x0,aL0).

4.3. Hydraulic jump

The next step is to evaluate the jump intensity at the back of the bubble (Fig. 12). Following
Wallis (1969), the equation through the singularity may be obtained using the mass and
momentum balance equations across it. If the pressure in the gas phase is supposed constant,
the momentum balance is:
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�Momentum out� ÿ �Momentum in� � FP1 ÿ FP2 � FW

which leads to:

rLrL1�Vÿ uL1�2�rLg

�aL1

0

�H1 ÿ z� daL � rLaL2�Vÿ uL2�2�rLg

�aL2

0

�H2 ÿ z� daL ÿ FW

A

where FW is the force exerted by the pipe wall upon the liquid, across the jump. In the x-frame,
the wall velocity is greater than the liquid velocity. Thus the force exerted by the wall upon the
liquid is a driving force (FW > 0) and not a resisting force as suggested by Ruder and Hanratty
(1990).
If we de®ne f�aL� �

� aL

0 �Hÿ z�=D daL:

Fr2R
aL1
� f�aL1� � Fr2R

aL2
� f�aL2� ÿ FW

rLgDA
�26�

where FrR � j=
�������
gD
p

is the Froude number based on the relative velocity.
At a ®xed FrR, for each value of aL1 there is only one value of aL2 satisfying Eq. (26). If

aL2r1, the hydraulic jump reaches the top of the pipe and there is no tail at the back of the
bubble.
Before studying the transition between plug and slug regimes, we shall recall the usual

closure laws concerning the bubble velocity as a function of the mixture velocity. From the
study of Bendiksen (1984), it is generally accepted that the bubble velocity may be determined
by

V � C0U� C1
�������
gD

p
where C0 and C1 are coe�cients that depend on the mixture Froude number FrU. For
FrU > 3:5, Bendiksen proposed that C0 � 1:2 and the drift coe�cient C1 vanishes. For
FrU<3:5, C0 is usually taken equal to 1 and the drift coe�cient is positive. Benjamin (1968)

Fig. 12. Hydraulic jump at the back of the bubble.
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showed that for inviscid ¯ow this coe�cient equals 0.54. Weber (1981) proposed a correction
of this value given by:

C1 � 0:542ÿ 1:76

Bo0:56

where the Bond number, Bo, depends on the super®cial tension s and is de®ned by:

Bo � DrgD2

s

For air and water in a 53 mm pipe, Bo � 390 and the drift coe�cient equals 0.48. To keep the
function between V and U continuous, the critical Froude number should be taken equal to:

Frcrit � C1
0:2

As a consequence, for FrU<Frcrit, the relative velocity Froude number, FrR, is constant and
equal to the drift coe�cient C1. On the contrary, when FrU > Frcrit, it may be written that
FrR � 0:2FrU. For the present case, it must be pointed out that Frcrit is equal to 2.4.
Experience shows that the hydraulic jump is not vertical, but along a ®nite length LJ �

x2 ÿ x1 (see Fig. 12) as it moves with the bubble. The pipe wall exerts a force upon the liquid
between points 1 and 2 given by:

FW �
�x2
x1

tW
L SL dx

The shear stress tW
L may not be estimated by usual steady-state closure laws because the ¯ow

between positions 1 and 2 is disturbed by the wake. The liquid velocity pro®le in this region
suggests that the shear stress is much higher than the shear stress estimated, considering fully
developed ¯ow. It is reasonable to consider that the shear stress in this region is somehow
proportional to the shear stress in the slug, tW

L0:

FW � LJhSLtW
L iJUMP � CJLJStW

L0 where CJ � hSLtW
L iJUMP

StW
L0

�27�

The coe�cient CJ and the jump length LJ were determined experimentally. The jump length
varied between 0.7 and 1.3D and it was assumed that LJ � 1D. The best ®t to data was
achieved with CJ � 4. Ruder and Hanratty (1990) used a similar expression with CJ equal to
unity and LJ in the range between 2 and 8D, that does not correspond to observed lengths of
the hydraulic jump.
Fig. 13 shows how the transition between plug and slug regimes, de®ned by the existence or

not of a tail at the back of the bubble (Ruder and Hanratty, 1990), may be determined. The
®gure presents the liquid volume fraction aL1 before the hydraulic jump as a function of the
mixture Froude number (FrU). Two set of curves are plotted: the solid curve gives the value of
aL1 when the jump reaches the top of the pipe. It is determined by Eq. (26) with aL2 � 1, the
force FW exerted by the wall being neglected. Note that as j does not depend on the liquid
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velocity for small values of the Froude number, the transition is represented in this region by a
horizontal line. Bubbles with value of aL1 that fall above this curve have a staircase shape,
corresponding to plug ¯ow. The dashed curves correspond to bubbles with a given length,
determined numerically from Eq. (23). The ®gure shows that for FrU smaller than 1, staircase
bubbles are always observed. In contrast, when FrU is greater than 3, every bubble longer than
5D is in the slug regime. At intermediate values of FrU, between 1 and 3, the existence of the
tail depends on the bubble length.
From experiments carried out in 95.3 mm pipe, Ruder and Hanratty (1990) suggested that

the transition between plug and slug ¯ow regimes is independent of the super®cial liquid
velocity and occurs at a ®xed gas velocity of about 0.6 m/s. It must be pointed out in passing,
that their experimental study is based on observation using a wide range of gas velocity
(0.018±0.62 m/s) and a rather narrow range of liquid velocity (0.50±0.95 m/s). In the present
study, the model suggests that there exists for some mixture velocities, a transition region in
which it should be observed short bubbles with tail and longer bubbles without it. If a
transition has to be de®ned precisely in this region, it must be based on the shape of the
bubble whose length is equal to the average. At a given mixture ¯ow rate, there is only one
value of aL1 that balances Eq. (26) with aL2 � 1. This liquid fraction (aL1) gives the bubble
length at transition. Assuming that the mean slug length LS is known, one can easily determine
the liquid and gas super®cial velocities that represent the transition line. Fig. 14 shows the
transition line for water and air ¯owing in a pipe of 95.3 mm, the same diameter used by
Ruder and Hanratty. (A) and (B) are constant mixture velocity lines that limit the transition
region. When the mixture velocity is smaller than the value given by (A), the staircase shape is
always observed. When it is higher than (B), it is never observed. Between these values, the

Fig. 13. Transition between the two intermittent regimes.
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transition line (C) depends on the bubble length. The rectangle, representing the experiments
reported by Ruder and Hanratty, shows that their observation is not contradictory with the
transition determined in this study from the shape of isolated bubbles.

4.4. Bubble tail

When a tail exists, its shape corresponds to the upper branch of Fig. 11. In this case, Eq.
(21) is solved with ka3L > 1. As the tail is usually con®ned at the very top of the pipe, we may
consider aL41 and linearise Eq. (3) assuming sL41 and daL=dh40.
The equation for the tail simpli®es to a linear relation between h and x:

dh

dx
� 2fL0

U 2

g 0D
� constant �28�

4.5. Flow regime in the liquid ®lm

In the present case, the Reynolds number Re1 � uL1�aL1=sL1�D=nL of the liquid ®lm far
from the nose is always greater than 2500. With this value the ¯ow is close to the transition
expected for fully developed ¯ow, although this transition is not well known for free surface
¯ow in circular pipe. However, the ¯ow regime ahead of the bubble nose is clearly turbulent
since the Reynolds number is always greater than 25,000. For the ¯ow in the liquid ®lm to
become laminar, the turbulence created ahead of the bubble must be killed during the residence

Fig. 14. Regime transition, D � 95:3 mm, LS � 32D.
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time of the liquid in the ®lm. For 80D bubbles in liquid velocity of 0.5 m/s, this time is about 5
s. It is likely that the laminarisation does not occur in such a short time.

5. Model validation

The model requires four input parameters: the pipe internal diameter, the liquid ¯ow
velocity, the bubble velocity and its volume. To solve the bubble shape, the value of aL1 is
initially determined by Eq. (14) or (15). The value of aL0 is then determined by Eq. (25). The
nose solution, Eq. (24), is applied in the range [0, x0]. The body solution is given by Eq. (23).
At the back of the bubble, the liquid fraction after the hydraulic jump, aL2, is determined using
Eqs. (26) and (27). When aL2 is smaller than 1, the tail shape is ®nally determined by Eq. (28).
The position of the hydraulic jump is determined from iterative process to match the
prescribed bubble volume.
The model was compared with experimental data at di�erent liquid velocities, from 0.5 to

1.8 m/s and with di�erent bubble volumes, from 1.5 to 6.0 l at inlet condition. Measured
values of liquid ¯ow velocity, bubble velocity and bubble volume were used as input. Data of
bubbles ¯owing at low liquid velocities are compared with the model in Fig. 15. The nose
model ®ts the experimental data at lower velocities, as expected, when a `Benjamin bubble' is
observed. The body solution is not able to predict the wavy interface, but it predicts
successfully its average height. Eqs. (26) and (27) give a good prediction of the hydraulic jump
intensity at the back of the bubble and the tail shape is very well described by Eq. (28). The
model is able to capture the relationship between the jump position and the tail length. For
each ¯ow condition, when the body of the bubble is shorter, the ®lm hold-up at the back end
of the bubble is higher. The hydraulic jump is then weaker and it creates a longer tail (Fig.
15a±d).
At high liquid velocities (Fig. 16c±d), when the bubble nose moves toward the centre of the

pipe, the model slightly underpredicts the liquid ®lm hold-up at distances shorter than 20 times
the pipe diameter. For longer bubbles, however, the model solution converges asymptotically
to the measured shape. Fig. 17 compares the predicted and measured positions of the hydraulic
jump at the back of the bubble. It shows that the model uncertainty to predict the bubble
length is about 25%.

6. Shape analysis

The present analysis is based exclusively on the nose and body solutions, given by Eqs. (23)±
(25). Air and water two-phase ¯ow is assumed and Eq. (15) applies.

6.1. Model sensitivity

For given gas and liquid, the shape of the gas bubble depends on three parameters: aL1, FrR

and fL0. The friction factor is rather constant for given liquid and pipe diameter, within a
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Fig. 15. Model validation: low liquid ¯ow rates: (a) 0.5 m/s, (b) 0.6 m/s, (c) 0.7 m/s, (d) 0.8 m/s. ÐÐÐ Exp. data;
ÐÐÐ Model.
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Fig. 15 (continued)
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Fig. 16. Model validation: high liquid ¯ow rates: (a) 1.0 m/s, (b) 1.2 m/s, (c) 1.5 m/s, (d) 1.8 m/s. ÐÐÐ Exp. data;
ÐÐÐ Model.
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reasonable range of the liquid velocity. Therefore, the analysis will be focused on aL1 and FrR.
Two di�erent situations shall be distinguished, with application to the present case (Bo � 390):

1. Low liquid velocities: For small liquid Froude number, the bubble velocity is determined by

V � U� 0:48
�������
gD

p
In this case, FrR is constant and equal to 0.48 while, aL1 is a function of j=V and depends
on the liquid ¯ow rate.
In this range, the liquid volume fraction far from the nose changes with the ¯ow rate, as

shown in Fig. 18. Accurate values of the velocities U and V are required to achieve a good
prediction of the bubble length.

2. High liquid velocities: At high liquid Froude number, the drift term vanishes and the bubble
velocity is determined by

V � 1:2U

In this case, FrR depends on the liquid ¯ow rate and aL1 is constant and equal to 0.173.
The liquid fraction far from the nose does not depend on the ¯ow rate. Fig. 19 shows that

the shape near the nose varies with the liquid velocity but far from it, the shape is
independent of the ¯ow conditions. In this case, a reasonable estimation of the phase
velocities allows a good prediction of the bubble length.

Fig. 17. Level jump position: comparison between model and experimental data.
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6.2. Mean void fraction at the bubble region and fully developed liquid ®lm

The slug tracking codes usually estimate a mean gas volume fraction to determine the bubble
length. Fig. 20 shows, for di�erent values of FrU, the evolution of the ratio between the mean
void fraction and the void fraction far from the nose, versus the bubble length. Even for
bubbles as long as 200D, the ®lm cannot be considered fully developed. For a bubble of 40D
and when FrU equals 3, the use of aL1 as the mean void fraction underpredicts the bubble
length of about 25%. At higher velocities the same ®gure shows that this error increases.

Fig. 19. Shape at high ¯ow rates: FrU � . 3.0; q 5.0; + 10.0.

Fig. 18. Shape at low ¯ow rates: FrU � � 1:0; q 1.5; . 2.0.
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Fig. 21 shows the length for a bubble to have a mean gas fraction equal to 90% of the gas
fraction of a bubble of in®nite length. Only bubbles longer than 200D reach this percentage.

7. Conclusion

The shape of long isolated bubbles moving in a horizontal liquid ¯ow was measured using a
set of liquid height sensors. Liquid velocities ranged from 0.5 to 1.8 m/s and bubble volumes
varied from 1.5 to 6.0 l at inlet condition. The measured liquid height of the ®lm was
converted into volume fraction assuming a horizontal interface. A staircase shape was observed
at liquid velocities smaller than 0.8 m/s.
A model to predict the bubble shape and its length is proposed. The bubble length is a

function of the pipe diameter, the velocity of the liquid moving ahead of the bubble, the
bubble velocity and its volume. The model may be easily integrated into slug tracking codes
and it agrees with experimental data.
Based on the model and on experimental data, a staircase shape is always observed when the

mixture Froude number, FrU, is less than 1. For FrU between 1 and 3, the existence of a tail
behind the bubble depends on the length of the bubble body.

Fig. 20. Ratio between the actual mean void fraction and the void fraction of a bubble of in®nite length: FrU � .
3.0; q 5.0; + 10.0.
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In usual slug ¯ow models that aim to predict the void fraction, the assumption of fully
developed liquid ®lm under the long bubbles tend to overestimate the gas fraction in this part
of the slug structure. The liquid ®lm under bubbles shorter than 200 times the pipe diameter is
never fully developed.

Appendix A. Geometric relations in a circular section

Referring to Fig. A1, the internal angle y may be written as:

y � 2cosÿ1�1ÿ 2h�, where h � H

D

The liquid volume fraction is then:

aL � yÿ sin y
2p

The wetted perimeter SL and the interface perimeter SI are, respectively:

SL � yD
2

and SI � Dsin�y=2�

Fig. 21. Length of bubbles where haGi � 0:90aG1
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A non-dimensional perimeter may be de®ned as the ratio between a perimeter and the total
pipe perimeter:

sL � SL

S
� y

2p
and sI � SI

S
� sin�y=2�

p

It is obvious that for the gas phase one may write:

aG � 1ÿ aL and sG � 1ÿ sL

Fig. A2 shows the evolution of sL with the liquid fraction. When aL varies between 0.2 and 0.8,
sL may be approximated by a linear expression:

sL � aL � 0:5

2
, 0:2<aL<0:8

The expression for (dh=daL) may be deduced:

dh

daL

� A

D

dH

dAL

� pD
4

1

SI

� 1

4sI

�) dh

daL

� p
4sin�y=2�

Fig. A3 shows how (dh=daL) varies with the liquid fraction. If aL is limited between 0.2 and
0.8, this parameter may be considered constant and equal to 0.820.
The function F�aL� is de®ned in the paper as:

F�aL� �
"
�aLsG � sI�4aL�sG � sI�

�aGsL�5
#1=7

Fig. A1. Geometric relations.
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It is plotted in Fig. A4. When the liquid fraction is limited between 0.1 and 0.5, F is linearly
proportional to aL. The linear relation shown in the ®gure is given by:

F�aL� � 1:70�aL � 0:5�

Fig. A2. Evolution of the wetted perimeter with the liquid volume fraction ÐÐÐ Exact value; ÐÐÐÐ
sL � 0:5�aL � 0:5�.

Fig. A3. Evolution of (dh=daL) with the liquid volume fraction ÐÐÐ Exact value; ÐÐÐÐ dh=daL � 0:820.
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